

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

967.

3 - 3396

Х. Абдуллаев, Б.Б. Захватаев, В.П. Перелыгин

ОПРЕДЕЛЕНИЕ

КОНЦЕНТРАЦИИ УРАНА В РАСТЕНИЯХ

ПО СЛЕДАМ ССКОЛКОВ ДЕЛЕНИЯ УРАНА

539.16.08. 581.054.528.1

3 - 3396

Х. Абдуллаев, Б.Б. Захватаев, В.П. Перелыгин

ОПРЕДЕЛЕНИЕ

КОНЦЕНТРАЦИИ УРАНА В РАСТЕНИЯХ

ПО СЛЕДАМ ОСКОЛКОВ ДЕЛЕНИЯ УРАНА

В 1963 г. Прайс и Уокер II предложили новый метод измерения концентрации урана в образцах. Этот метод основывается на использовании помещаемых вплотную к исследуемому образцу диэлектрических детекторов осколков деления /2/. Затем образец и детектор облучаются потоком тепловых нейтронов, которые вызывают деление ядер и заб . Осколки деления ядер урана попадают в детектор и создают в нем нарушения структуры, имеющие форму треков диаметром ~100 м° и длиной порядка десяти микрон. После облучения детектор подвергается химическому травлению, в результате которого следы осколков увеличиваются в диаметре до 5-10 микрон, что позволяет вести их поиски на обычных оптических микроскопах. На основании известных потоков нейтронов, сечения деления и заб тепловыми нейтронами и плотности следов осколков вынужденного деления определяется концентрация урана в исследуемом образце.

Чувствительность этого метода определяется содержанием урана в самих детекторах. В качестве внешнего детектора целесообразно использовать лавсан, концентрация урана в котором $< 10^{-10} \text{ г/г}$

При количественных измерениях содержания урана необходимо учитывать тормозную способность исследуемого образца, определяемую его химическим составом $^{/4/}$.

Эта методика была применена нами для измерения средней концентрации урана в растениях, собранных в северном районе Таджикской ССР.

Образцы растений предварительно отжигались при температуре 600° С в муфельной печи в течение одного часа, затем зола перемешивалась и помещалась в лавсановые пакеты. Толщина слоя золы достигала 5-25 мг/см², в то время как максимальный пробег осколков в среде с \overline{z} = 12 - 14 не превосходит 2-3 мг/см²/4/.

Облучение этих образцов нейтронами производилось на реакторе ИБР СИЯИ, интегральный поток нейтронов составлял 10^{14} - 10^{15} н/см².

После облучения слои лавсана подвергались травлению в КОН с удельным весом 1,35 г/
при температуре 20°C в течение 18 часов. Просмотр детекторов производился на микроскопо Цейсс Люмипан при увеличении 150х; определялась плотность следов осколков деления.

Для контроля потока тепловых нейтронов в этих опытах использовались калиброванные препараты урана, помещавшиеся поверхносты к поьерхности детекторов из силикатного стег

Поскольку препарат урана и исследуемый образец облучались в одинаковых условиях, и центрация урана определялась из соотношения плотностей следов осколков, зарегистрирована этих детекторах /4/.

Результаты экспериментов по измерению концентрации урана приведены в табл.1. Из та цы видно, что концентрация урана в различных растениях, собранных в одной местности, находится в интервале 10^{-9} - 10^{-6} г/г сухого вещества, наибольшее количество урана сожится в гранате и сосне, а наименьшее в повилике.

Этот результат согласуется с данными Кэннона /5/, установившего с помощью флюорометрического метода, что концентрация урана в древесных растениях существенно выше, че травах из той же местности.

Описанная выше методика измерения концентрации урана отличается простотой и надеж ностью, не требует больших затрат времени на обработку детекторов осколков деления.

Точность измерения концентрации урана в образцах достигает - 10%.

Преимуществом данного метода является его высокая чувствительность, достигающая $10^{-10}~\mathrm{r/r}$ для урана.

С помощью этого метода возможно также производить радиографию исследуемых образцо если концентрация урана в них составляет $> 10^{-8}$ г/г.

В заключение авторы выражают глубокую благодарность члену-корреспонденту АН СССР Г.Н.Флерову за постоянное внимание к работе и полезные обсуждения.

Литература

- I. P.B. Price, R.M. Walker, J.Appl. Phys., 33, 3407 (1963)
- P.B. Price, R.M.Walker . Appl.Phys.Letters, 2, 23 (1963)
- 3. Х.Абдуллаев, С.К.Горбачев, В.П.Перелыгин, С.Т.Третьякова. Препринт ОИЯМ, Р3-29 Дубна, 1966.
- 4. Х.Абдуллаев, А.Капусцик, О.Отгонсурен, В.П.Перелыгин, Д.Чултэм. Препринт ОИЯИ РІЗ-3243, Дубна, 1967.
 - 5. Х.Л.Кэннон. Материалы П Международной конференции по мирному использованию атомной энергии, Женева, 1955год, Георгия, т.1, стр. 461.

Таблига I Результаты измерения концентрации урана в растениях

	Наи м енование образцов растений	С ухо е г	растение	растений		Концентрация в сухих раст г/г
I.	Сосна		2,5	0,14	1.104	2,10.10-7
2.	Гранат		4,0	0,15	I,23.I0 ⁴	I,84.IO ⁻⁷
3.	Вьюнок березка		I,4	0,10	3,2.I0 ³	9,02.IU ⁻⁸
4.	Заразиха		2,0	0,16	I,36.I0 ³	4,45.IO ⁻⁸
5.	Бродач		0,9	0,07	$1,5.10^{3}$	4,19.10 ⁻⁸
6.	Миндаль		3,0	0,14	1,8.103	3,32.10 ⁻⁸
7.	Поташник		0,9	0,15	2,4.103	I,66.IU ⁻⁸
8.	пихоN		0,5	0,12	910	9,06.10 ⁻⁹
9.	Парнолистник		0,3	0,10	290	3,76.IU ⁻⁹
IO.	Роза		0,7	0,04	170	3,25.IO ⁻⁹
II.	Горох		0,9	0,08	640	2,2I.IO ⁻⁹
12.	Гирченсония		0,9	0,15	260	I,66.IC ⁻⁹
13.	Повилика		0,6	0,02	I40	I,6I.I0 ⁻⁹

Рукопись поступила в издательский отдел

I5 июня I967 года.

Предварительный вариант - 18 апреля 1967 года.